Biblio

Export results:
Author Title Type [ Year(Asc)]
Filters: Keyword is Internet of Things and Author is Rodrigo Roman  [Clear All Filters]
J. A. Onieva, R. Rios, R. Roman, and J. Lopez, "Edge-Assisted Vehicular Networks Security",
IEEE Internet of Things Journal, vol. 6, issue 5, IEEE Computer Society, pp. 8038-8045, 10/2019. DOI (I.F.: 9.936)More..

Abstract

Edge Computing paradigms are expected to solve some major problems affecting current application scenarios that rely on Cloud computing resources to operate. These novel paradigms will bring computational resources closer to the users and by doing so they will not only reduce network latency and bandwidth utilization but will also introduce some attractive context-awareness features to these systems. In this paper we show how the enticing features introduced by Edge Computing paradigms can be exploited to improve security and privacy in the critical scenario of vehicular networks (VN), especially existing authentication and revocation issues. In particular, we analyze the security challenges in VN and describe three deployment models for vehicular edge computing, which refrain from using vehicular- to-vehicular communications. The result is that the burden imposed to vehicles is considerably reduced without sacrificing the security or functional features expected in vehicular scenarios.

Impact Factor: 9.936
Journal Citation Reports® Science Edition (Thomson Reuters, 2019)

PDF icon onieva2019vec.pdf (416.43 KB)
R. Roman, R. Rios, J. A. Onieva, and J. Lopez, "Immune System for the Internet of Things using Edge Technologies",
IEEE Internet of Things Journal, vol. 6, issue 3, IEEE Computer Society, pp. 4774-4781, 06/2019. DOI (I.F.: 9.936)More..

Abstract

The Internet of Things (IoT) and Edge Computing are starting to go hand in hand. By providing cloud services close to end-users, edge paradigms enhance the functionality of IoT deployments, and facilitate the creation of novel services such as augmented systems. Furthermore, the very nature of these paradigms also enables the creation of a proactive defense architecture, an immune system, which allows authorized immune cells (e.g., virtual machines) to traverse edge nodes and analyze the security and consistency of the underlying IoT infrastructure. In this article, we analyze the requirements for the development of an immune system for the IoT, and propose a security architecture that satisfies these requirements. We also describe how such a system can be instantiated in Edge Computing infrastructures using existing technologies. Finally, we explore the potential application of immune systems to other scenarios and purposes.

Impact Factor: 9.936
Journal Citation Reports® Science Edition (Thomson Reuters, 2019)

PDF icon roman2018VIS.pdf (149.3 KB)
R. Roman, J. Lopez, and S. Gritzalis, "Evolution and Trends in the Security of the Internet of Things",
IEEE Computer, vol. 51, issue 7, IEEE Computer Society, pp. 16-25, 07/2018. DOI (I.F.: 3.564)More..
Impact Factor: 3.564
Journal Citation Reports® Science Edition (Thomson Reuters, 2018)

PDF icon RomanIoT18.pdf (1.15 MB)
H. Tsunoda, R. Roman, J. Lopez, and G. Mansfield Keeni, "Feasibility of Societal Model for Securing Internet of Things",
KSII Transactions on Internet and Information Systems, vol. 12, no. 8, KSII, pp. 3567-3588, 08/2018. DOI (I.F.: 0.711)More..

Abstract

In the Internet of Things (IoT) concept, devices communicate autonomously with applications in the Internet. A significant aspect of IoT that makes it stand apart from present-day networked devices and applications is a) the very large number of devices, produced by diverse makers and used by an even more diverse group of users; b) the applications residing and functioning in what were very private sanctums of life e.g. the car, home, and the people themselves. Since these diverse devices require high-level security, an operational model for an IoT system is required, which has built-in security. We have proposed the societal model as a simple operational model. The basic concept of the model is borrowed from human society – there will be infants, the weak and the handicapped who need to be protected by guardians. This natural security mechanism works very well for IoT networks which seem to have inherently weak security mechanisms. In this paper, we discuss the requirements of the societal model and examine its feasibility by doing a proof-of-concept implementation.

Impact Factor: 0.711
Journal Citation Reports® Science Edition (Thomson Reuters, 2018)

PDF icon Hiroshi18IoT.pdf (1.17 MB)
R. Roman, J. Zhou, and J. Lopez, "On the features and challenges of security and privacy in distributed internet of things",
Computer Networks, vol. 57, Elsevier, pp. 2266–2279, July 2013. DOI (I.F.: 1.282)More..

Abstract

In the Internet of Things, services can be provisioned using centralized architectures, where central entities acquire, process, and provide information. Alternatively, distributed architectures, where entities at the edge of the network exchange information and collaborate with each other in a dynamic way, can also be used. In order to understand the applicability and viability of this distributed approach, it is necessary to know its advantages and disadvantages – not only in terms of features but also in terms of security and privacy challenges. The purpose of this paper is to show that the distributed approach has various challenges that need to be solved, but also various interesting properties and strengths.

Impact Factor: 1.282
Journal Citation Reports® Science Edition (Thomson Reuters, 2013)

PDF icon roman2013iot.pdf (407.59 KB)
C. Alcaraz, R. Roman, P. Najera, and J. Lopez, "Security of Industrial Sensor Network-based Remote Substations in the context of the Internet of Things",
Ad Hoc Networks, vol. 11, Elsevier, pp. 1091–1104, 2013. DOI (I.F.: 1.943)More..

Abstract

The main objective of remote substations is to provide the central system with sensitive information from critical infrastructures, such as generation, distribution or transmission power systems. Wireless sensor networks have been recently applied in this particular context due to their attractive services and inherent benefits, such as simplicity, reliability and cost savings. However, as the number of control and data acquisition systems that use the Internet infrastructure to connect to substations increases, it is necessary to consider what connectivity model the sensor infrastructure should follow: either completely isolated from the Internet or integrated with it as part of the Internet of Things paradigm. This paper therefore addresses this question by providing a thorough analysis of both security requirements and infrastructural requirements corresponding to all those TCP/IP integration strategies that can be applicable to networks with constrained computational resources.

Impact Factor: 1.943
Journal Citation Reports® Science Edition (Thomson Reuters, 2013)

PDF icon 1752.pdf (1.21 MB)
R. Roman, P. Najera, and J. Lopez, "Securing the Internet of Things",
IEEE Computer, vol. 44, no. 9, IEEE, pp. 51 -58, Sept 2011. DOI (I.F.: 1.47)More..

Abstract

This paper presents security of Internet of things. In the Internet of Things vision, every physical object has a virtual component that can produce and consume services Such extreme interconnection will bring unprecedented convenience and economy, but it will also require novel approaches to ensure its safe and ethical use. The Internet and its users are already under continual attack, and a growing economy-replete with business models that undermine the Internet’s ethical use-is fully focused on exploiting the current version’s foundational weaknesses.

Impact Factor: 1.47
Journal Citation Reports® Science Edition (Thomson Reuters, 2011)

PDF icon 1633.pdf (373.78 KB)
C. Alcaraz, R. Roman, P. Najera, and J. Lopez, "Acceso seguro a redes de sensores en SCADA a través de Internet",
XI Reunión Española sobre Criptología y Seguridad de la Información (RECSI 2010), pp. 337-342, September, 2010. More..

Abstract

Las Infraestructuras Críticas (ICs) son monitorizadas por sistemas altamente complejos, conocidos como sistemas SCADA (Sistemas de Control y Adquisición de Datos), cuyo principal soporte se encuentra en las subestaciones, las cuales miden de primera instancia el estado real de tales ICs. Para mejorar este control, la industria está actualmente demandando la integración en el modelo tradicional de dos avances tecnológicos: Internet y las redes de sensores inalámbricas. Sin embargo, su incorporación requiere analizar los requisitos de seguridad que surgen en dicho contexto, así como diversos aspectos correlacionados (ej. mantenimiento, rendimiento, seguridad y optimización) y, en base a estos, la estrategia de integración más adecuada para satisfacer dichos requisitos. Este artículo proporciona dicho análisis en profundidad con el fin de ofrecer un modelo de integración seguro adecuado para entornos críticos.

PDF icon Alcaraz2010.pdf (496.18 KB)
Modify or remove your filters and try again.