Biblio

Export results:
Author Title [ Type(Desc)] Year
Filters: Keyword is resilience  [Clear All Filters]
Conference Paper
C. Alcaraz, and S. Wolthusen, "Recovery of Structural Controllability for Control Systems",
Eighth IFIP WG 11.10 International Conference on Critical Infrastructure Protection, SRI International, Arlington, Virginia, USA , vol. 441, Springer, pp. 47-63, 2014. DOI More..

Abstract

Fundamental problems in control systems theory are controllability and observability, and designing control systems so that these properties are satisfied or approximated sufficiently. However, it is prudent to as- sume that an attacker will not only be able to subvert measurements but also control the system. Moreover, an advanced adversary with an understanding of the control system may seek to take over control of the entire system or parts thereof, or deny the legitimate operator this capability. The effectiveness of such attacks has been demonstrated in previous work. Indeed, these attacks cannot be ruled out given the likely existence of unknown vulnerabilities, increasing connectivity of nominally air-gapped systems and supply chain issues. The ability to rapidly recover control after an attack has been initiated and to detect an adversary’s presence is, therefore, critical. This paper focuses on the problem of structural controllability, which has recently attracted substantial attention through the equivalent problem of the power dom- inating set introduced in the context of electrical power network control. However, these problems are known to be NP-hard with poor approx- imability. Given their relevance to many networks, especially power networks, this paper studies strategies for the efficient restoration of controllability following attacks and attacker-defender interactions in power-law networks. 

PDF icon 430.pdf (418.49 KB)
Journal Article
A. D. Syrmakesis, C. Alcaraz, and N. D. Hatziargyriou, "Classifying resilience approaches for protecting smart grids against cyber threats",
International Journal of Information Security, vol. 21, Springer, pp. 1189–1210, 05/2022. DOI (I.F.: 2.427)More..

Abstract

Smart grids (SG) draw the attention of cyber attackers due to their vulnerabilities, which are caused by the usage of heterogeneous communication technologies and their distributed nature. While preventing or detecting cyber attacks is a well-studied field of research, making SG more resilient against such threats is a challenging task. This paper provides a classification of the proposed cyber resilience methods against cyber attacks for SG. This classification includes a set of studies that propose cyber-resilient approaches to protect SG and related cyber-physical systems against unforeseen anomalies or deliberate attacks. Each study is briefly analyzed and is associated with the proper cyber resilience technique which is given by the National Institute of Standards and Technology in the Special Publication 800-160. These techniques are also linked to the different states of the typical resilience curve. Consequently, this paper highlights the most critical challenges for achieving cyber resilience, reveals significant cyber resilience aspects that have not been sufficiently considered yet and, finally, proposes scientific areas that should be further researched in order to enhance the cyber resilience of SG.

Impact Factor: 2.427
Journal Citation Reports® Science Edition (Thomson Reuters, 2021)

PDF icon Syrmakesis2022.pdf (257.14 KB)
C. Alcaraz, "Cloud-Assisted Dynamic Resilience for Cyber-Physical Control Systems",
IEEE Wireless Communications, vol. 25, no. 1, IEEE, pp. 76-82, 02/2018. DOI (I.F.: 11)More..
Impact Factor: 11
Journal Citation Reports® Science Edition (Thomson Reuters, 2018)

PDF icon Alcaraz2018a.pdf (3.46 MB)