Biblio

Export results:
Author Title Type [ Year(Asc)]
Filters: Keyword is Secure Multiparty computation and Author is Javier Lopez  [Clear All Filters]
D. Morales, I. Agudo, and J. Lopez, "Private set intersection: A systematic literature review",
Computer Science Review, vol. 49, no. 100567, Elsevier, 05/2023. DOI (I.F.: 8.757)More..

Abstract

Secure Multi-party Computation (SMPC) is a family of protocols which allow some parties to compute a function on their private inputs, obtaining the output at the end and nothing more. In this work, we focus on a particular SMPC problem named Private Set Intersection (PSI). The challenge in PSI is how two or more parties can compute the intersection of their private input sets, while the elements that are not in the intersection remain private. This problem has attracted the attention of many researchers because of its wide variety of applications, contributing to the proliferation of many different approaches. Despite that, current PSI protocols still require heavy cryptographic assumptions that may be unrealistic in some scenarios. In this paper, we perform a Systematic Literature Review of PSI solutions, with the objective of analyzing the main scenarios where PSI has been studied and giving the reader a general taxonomy of the problem together with a general understanding of the most common tools used to solve it. We also analyze the performance using different metrics, trying to determine if PSI is mature enough to be used in realistic scenarios, identifying the pros and cons of each protocol and the remaining open problems.

Impact Factor: 8.757
Journal Citation Reports® Science Edition (Thomson Reuters, 2021)

PDF icon morales2023psi.pdf (656.25 KB)
D. Morales, I. Agudo, and J. Lopez, "Real-time Crowd Counting based on Wearable Ephemeral IDs",
19th International Conference on Security and Cryptography (SECRYPT 2022), Scitepress, pp. 249-260, 07/2022. DOI More..

Abstract

Crowd Counting is a very interesting problem aiming at counting people typically based on density averages and/or aerial images. This is very useful to prevent crowd crushes, especially on urban environments with high crowd density, or to count people in public demonstrations. In addition, in the last years, it has become of paramount importance for pandemic management. For those reasons, giving users automatic mechanisms to anticipate high risk situations is essential. In this work, we analyze ID-based Crowd Counting, and propose a real-time Crowd Counting system based on the Ephemeral ID broadcast by contact tracing applications on wearable devices. We also performed some simulations that show the accuracy of our system in different situations.

PDF icon morales2022cc.pdf (373.42 KB)
J. A. Montenegro, and J. Lopez, "A practical solution for sealed bid and multi-currency auctions",
Computers & Security, vol. 45, Elsevier, pp. 186-198, 09/2014. DOI (I.F.: 1.031)More..

Abstract

This paper introduces a sealed bid and multi-currency auction using secure multiparty computation (SMC).

Two boolean functions, a comparison and multiplication function, have been designed as required to apply SMC. These functions are applied without revealing any information, not even to trusted third parties such as the auctioneer. A type of Zero Knowledge proof, discreet proof, has been implemented with three variants, interactive, regular and reduced non interactive proofs. These proofs make it possible to verify the correctness of the functions whilst preserving the privacy of the bid values. Moreover, a system performance evaluation of the proposal has been realized on heterogeneous platforms, including a mobile platform. The evaluation concludes that our proposal is practical even on mobile platforms.

Impact Factor: 1.031
Journal Citation Reports® Science Edition (Thomson Reuters, 2014)

PDF icon MoLo15.pdf (1.48 MB)
Modify or remove your filters and try again.