Fighting Pirates 2.0

By

Paolo D'Arco and Ángel L. Pérez del Pozo

Rey Juan Carlos

Introduction

- In EUROCRYPT 2009, Billet and Phan presented Traitors collaborating in public: Pirates 2.0.
- This was a new attack model agains \dagger tracing and revoking schemes.
- In this work we present measures to deal with some of these attacks.

1. Background

- Broadcast encryption -CS and SD
-Traitor tracing

The Broadcast Encryption Problem

- A center BC broadcast a msg to a set U of N receivers
- A subset R of them are revoked and should
 not be able to decrypt the msg
- R changes from time to time
- We will focus on stateless receivers

BC
msg

- revoked
o non-revoked

Subset Cover Framework [NNLO1]

- Framework encapsulates many previous schemes
- Underlying collection of subsets (of users/devices)

$$
S_{1}, S_{2}, \ldots, S_{W} \quad S_{j} \subseteq U
$$

- Each subset S_{j} is associated with a long-lived key L_{j} - A user $u \in S_{j}$ should be able to deduce L_{j} from its secret information $s k_{u}$

The Broadcast Algorithm

- Choose a session key K
- Given R, find a partition of $U \backslash$ Rinto disjoint sets

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{i}_{1}}, \mathrm{~S}_{\mathrm{i}_{2}}, \ldots, \mathrm{~S}_{\mathrm{i}_{\mathrm{m}}} \\
& U \backslash R=\cup \mathrm{S}_{\mathrm{i}_{\mathrm{j}}}
\end{aligned}
$$

with associated keys $\mathrm{L}_{\mathrm{i}_{1}}, \mathrm{~L}_{\mathrm{i}_{2}}, \ldots, \mathrm{~L}_{\mathrm{i}_{\mathrm{m}}}$

- Encrypt message M

$$
\begin{array}{l|l}
{\left[\mathrm{i}_{1}, \mathrm{i}_{2}, \ldots, \mathrm{i}_{\mathrm{m}}\right], \quad \mathrm{C}_{1}=\mathrm{E}_{\mathrm{Li}_{1}}(\mathrm{~K}), \ldots, \mathrm{C}_{\mathrm{m}}=\mathrm{ELi}_{\mathrm{L}}(\mathrm{~K})} & \mathrm{F}_{\mathrm{K}}(\mathrm{M}) \\
\hline
\end{array}
$$

Complete Subtree (CS)

$$
\operatorname{sk}_{\mathrm{u}}=\left\{\left(0, \mathrm{~L}_{0}\right),\left(1, \mathrm{~L}_{1}\right),\left(4, \mathrm{~L}_{4}\right),\left(10, \mathrm{~L}_{10}\right),\left(21, \mathrm{~L}_{21}\right),\left(44, \mathrm{~L}_{44}\right)\right\}
$$

Subset Difference (SD)

$S_{i, j}$
$S_{i, j}=$ Set of all leaves in the subtree of V_{i} but not in V_{j}

Key-assignment for SD

- Naive key-assignment: each user must store too many keys, one for each S_{ij}
- To improve this, a pseudorandom generator is used for key derivation : each user stores only $O\left((\log N)^{2}\right)$ labels
- From labels and PRG, user covered by $S_{i j}$ can derive key $L_{i j}$

Traitor tracing

- traitors: users that collude to produce a pirate decoder
- tracing procedure : from a pirate decoder the identity of at least one traitor is revealed
- CS and SD feature a tracing procedure:
- a traitor is identified or
- a new cover is computed (safe for the pirate decoder)

2. Pirates 2.0 attack

Pirates 2.0: basic features

- Public collusion.
- Partial contribution.
- Anonymity guarantee.
- Large coalitions.
- Imperfect decoders.

Pirates 2.0: the model

- Contribution C: publicly available set which collects the info traitors give
- Extraction function: function of the sk of a traitor which is added to C
- Anonymity level of a traitor T: \# of users which could have contributed to C precisely the same info as T

Pirates 2.0: the schemes

Schemes attacked in [BPO9]:

- subset cover framework
- analysis for CS and SD
- code based schemes

Our work: countermeasures for CS and SD

Pirates 2.0 attack on CS

- Extraction functions are projections $s k_{T}=\left\{\left(i, L_{i}\right)\right\}_{i} \Rightarrow f_{i}(s k)=L_{i}$
- Traitors contribute with keys corresp. to the upper levels of the tree.
- These subtrees cover a large \# of users \Rightarrow high anonymity level

Contributed info (1 traitor)

contribution $=\left\{\mathrm{L}_{0}, \mathrm{~L}_{1}, \mathrm{~L}_{4}\right\}$

Contributed info (>1 traitor)

users

- traitors
contribution $=\left\{\mathrm{L}_{0}, \ldots, \mathrm{~L}_{6}\right\}$

Pirates 2.0 attack on CS

Theorem [BPO9] :

- system with N users
- r revoked users
- $d \log d$ randomly selected traitors
- length of ciphertext header < $d(N-r) / N$

Then:

- successful pirate decoder (high prob.)
- anonymity level for traitors: N / d Analog result for SD

3. Partial measures

Partial measure for CS :

 hiding labels- Attack is successful because users know the level of their keys.
- Idea: hide the level
- $B C$ sends to user u covered by subtree S_{i} $\left(\pi(i), L_{i}\right)$ instead of ($\mathrm{i}, \mathrm{L}_{\mathrm{i}}$)
where π is a secret permutation of labels
- Broadcast ($\pi(\mathrm{i}), \mathrm{E}_{\mathrm{Li}}(\mathrm{K})$)

Partial measure for CS: hiding labels

Cons:

- By public collaboration, traitors can estimate the level of their keys.
Pros:
- A traitor must trust the others.
- Traitors lose the anonimity guarantee.
- "Cheap" to implement.

Partial measure for CS : or-based construction

- Idea: use the OR-protocols from [GSY99] to reduce anonimity level
- For each subtree $S_{i}, B C$ fixes set of keys

$$
K_{i}=\left\{L_{i 1}, \ldots, L_{i m}\right\}
$$

and a prob. dist. D_{i} over K_{i}

- User u covered by S_{i} receives a single key $L_{i j}$ according to D_{i}
- All keys in K_{i} are used to broadcast

Partial measure for CS : or-based construction

Cons:

- Total \# of gen. keys grows by m factor
- Ciphertext length grows by m factor

Pros:

- \# keys per user remains the same
- anon. level is reduced
- anon. guarantee is lost (only probabilistic)

4. Hybrid CS and SD

Hybrid CS scheme: Idea

Combine two constructions:

- CS scheme from [NNL01].
- Polynomial-based scheme from [NPOO].

Hybrid CS: Parameters

- $G=\langle g\rangle$: group of order q with hard DDH.
- threshold value $\dagger>0$
- (public) reconstruction values

$$
\left\{I_{1}, \ldots, I_{+}\right\} \text {in } Z_{q} \backslash\{0\}
$$

- User u gets I_{u} in $Z_{q} \backslash\left\{0, I_{1}, \ldots, I_{+}\right\}$

Hybrid CS: Setup

For each subtree $S_{i}, B C$

- chooses (secret) t-degree polymial $P_{i}(x) \leftarrow_{\$} Z_{q}[x]$
- sends to each user u covered by S_{i} (i, $P_{i}\left(I_{u}\right)$)

Hybrid CS: Broadcast

For new session, $B C$

- chooses session key K
- computes a cover $S=\left\{S_{i}\right\}$ for leg. users
- for each subtree S_{i} in S :

1. $r_{i} \leftarrow_{\$} Z_{q}$
2. $\left.\forall j=1, \ldots, t \quad d_{i j}:=g^{r i p(I T}\right)$
3. $K_{i}=g^{r i p i(0)}$
4. broadcasts ($\mathrm{i}, \mathrm{g}^{\mathrm{ri}},\left\{\mathrm{d}_{\mathrm{i}}\right\}_{j}, \mathrm{E}_{\mathrm{k} i}(\mathrm{~K})$)

- broadcasts $F_{K}(M)$

Hybrid CS: Decryption

Leg. user u, from
broadcast: $\left(\mathrm{i}, \mathrm{g}^{\mathrm{ri}},\left\{\mathrm{d}_{\mathrm{ij}}:=g^{\mathrm{ri} \mathrm{Pi}\left(\mathrm{I}_{\mathrm{j}}\right)}\right\}, \mathrm{E}_{\mathrm{ki}}(\mathrm{K})\right)$ u info: ($\left.i, P_{i}\left(I_{u}\right)\right), I_{u}$
(public) values: $\left\{I_{1}, \ldots, I_{+}\right\}$
computes the subtree key $\mathrm{K}_{i}:=g^{\text {ri Pi }}(0)$ by
"polynomial interpolation in the exponent". Then recovers session key K

Hybrid SD scheme: Idea

Also combine the 2 constructions:

- SD scheme from [NNL01].
- Polynomial-based scheme from [NPOO].

Not an immediate generalization of previous construction:

- We preserve the pseudorandom key generation which allows each user to store only $O\left((\log N)^{2}\right)$ labels.

Hybrid SD: Parameters

- $G=\langle g\rangle$: group of order q with hard DDH.
- threshold value $\dagger>0$
- (public) reconstruction values

$$
\left\{I_{1}, \ldots, I_{+}\right\} \text {in } Z_{q} \backslash\{0\}
$$

- User u gets I_{u} in $Z_{q} \backslash\left\{0, I_{1}, \ldots, I_{+}\right\}$

Hybrid SD: Setup

$B C$ generates an instance of SD with Z_{q} as set for keys $L_{i j}$
Then, for each subtree $S_{i}, B C$

- chooses (secret) t-degree polymial

$$
P_{i}(x) \leftarrow_{\$} Z_{q}[x]
$$

- sends to each user u covered by $S_{i, *}$
(i, $P_{i}\left(I_{u}\right)$) and
labels that SD assigns to him

Hybrid SD: Broadcast

For new session, $B C$

- chooses session key K
- computes a cover $S=\left\{S_{i j}\right\}$ for leg. users
- for each subtree $S_{i j}$ in S :

1. $r_{i} \leftarrow_{\$} Z_{q}$
2. $\forall k=1, \ldots, t \quad d_{\mathrm{ijk}}:=g^{r i} \mathrm{P}(\mathrm{I} \mathrm{K}) \mathrm{Lij}$
3. $K_{i j}:=g^{r i} P_{i}(0) L i j$
4. broadcasts (ij, gri, $\left.\left\{\mathrm{d}_{\mathrm{ijk}}\right\}_{k,}, E_{\mathrm{kij}}(\mathrm{K})\right)$

- broadcasts $F_{K}(M)$

Hybrid SD: Decryption

- Again, leg. user u recovers subtree key K_{ij} by "polynomial interpolation in the exponent".
- Then u recovers session key K

Hybrid CS and SD: Analysis

- Each pair $\left(i, P_{i}\left(I_{u}\right)\right)$ determines univocally user u
- Therefore the Pirates 2.0 strategy that uses projection functions does not work anymore, as anonymity level drops to 1 (traitor can be traced)

Hybrid CS and SD: Analysis

- We also prove that our schemes satisfy the key-ind property in the Subset-Cover framework.
- This implies that they are secure against arbitrary coalitions of revoked users.
- They are also as efficient as CS and SD, in terms of key storage and bandwidth (with a t factor growth)

Hybrid CS and SD: Analysis

Price to pay:

- Broadcast and decryption computations are more expensive than ones in CS and SD (exponentiations)
- $\dagger+1$ users covered by subtree S_{i} can compute and distribute $P_{i}(0)$, which allows to decrypt if S_{i} is used

Hybrid CS and SD: Analysis

Advantages:

- Pirates 2.0 with proj. func. are traced
- Secure against arb. coa. of rev. users
- Efficient as CS and SD both in:
- Key storage
- Bandwith (asymptotically)

Open problems

- It is of interest to formally define a security model which covers all possible Pirates 2.0 attacks
- and find and prove schemes (existing or new) to be secure in this extended model.

Thank you!

 Questions?