9th International Conference on Applied Cryptography and Network Security (ACNS '11) Nerja (Málaga), Spain, June 7-10, 2011

Fighting Pirates 2.0

By

Paolo D'Arco and Ángel L. Pérez del Pozo

Introduction

- In EUROCRYPT 2009, Billet and Phan presented *Traitors collaborating in public: Pirates 2.0.*
- This was a new attack model against tracing and revoking schemes.
- In this work we present measures to deal with some of these attacks.

1. Background

Broadcast encryption
CS and SD
Traitor tracing

The Broadcast Encryption Problem

- A center BC broadcast a msg to a set U of N receivers
- A subset R of them are revoked and should not be able to decrypt the msg
 - R changes from time to time
 - We will focus on stateless receivers

Subset Cover Framework [NNL01]

- Framework encapsulates many previous schemes
- Underlying collection of subsets (of users/devices)

$$S_1, S_2, \dots, S_W$$
 $S_j \subseteq U$

- Each subset S_i is associated with a *long-lived* key L_i
 - A user $u \in S_j$ should be able to deduce $\ L_j$ from its secret information sk_u

The Broadcast Algorithm

- \bullet Choose a session key K
- Given R, find a partition of $U \setminus R$ into disjoint sets

$$\mathbf{S}_{\mathbf{i}_1}, \mathbf{S}_{\mathbf{i}_2}, \dots, \mathbf{S}_{\mathbf{i}_m}$$

 $U \setminus R = \bigcup S_{i_j}$ with associated keys $L_{i_1}, L_{i_2}, \dots, L_{i_m}$

• Encrypt message M

 $[i_1, i_2, \dots, i_m], \quad C_l = E_{\text{Li}_l}(\mathbf{K}), \quad \dots, \quad C_m = E_{\text{Li}_m}(\mathbf{K}) \qquad F_{\mathbf{K}}(\mathbf{M})$ HEADER Body

Complete Subtree (CS)

Subset Difference (SD)

 $S_{i,j}$ = Set of all leaves in the subtree of V_i but <u>not</u> in V_j

Key-assignment for SD

- Naive key-assignment: each user must store too many keys, one for each S_{ij}
- To improve this, a pseudorandom generator is used for key derivation : each user stores only O((log N)²) labels
- From labels and PRG, user covered by S_{ij} can derive key L_{ij}

Traitor tracing

- *traitors*: users that collude to produce a *pirate decoder*
- tracing procedure : from a pirate decoder the identity of at least one traitor is revealed
- CS and SD feature a tracing procedure:
 - a traitor is identified or
 - a new cover is computed (safe for the pirate decoder)

2. Pirates 2.0 attack

Pirates 2.0: basic features

- Public collusion.
- Partial contribution.
- Anonymity guarantee.
- Large coalitions.
- Imperfect decoders.

Pirates 2.0: the model

- Contribution C : publicly available set which collects the info traitors give
- *Extraction function*: function of the sk of a traitor which is added to C
- Anonymity level of a traitor T : # of users which could have contributed to C precisely the same info as T

Pirates 2.0: the schemes

Schemes attacked in [BP09]:

- subset cover framework
- analysis for CS and SD
- code based schemes

Our work: countermeasures for CS and SD

Pirates 2.0 attack on CS

- Extraction functions are projections $sk_T = \{(i, L_i)\}_i \Rightarrow f_i(sk) = L_i$
- Traitors contribute with keys corresp. to the upper levels of the tree.

• These subtrees cover a large # of users \Rightarrow high anonymity level

Contributed info (1 traitor)

Contributed info (>1 traitor)

Pirates 2.0 attack on CS

Theorem [BP09]:

- system with N users
- r revoked users
- *d log d* randomly selected traitors
- length of ciphertext header $\langle d(N-r) / N$ Then:
- successful pirate decoder (high prob.)
- anonymity level for traitors: N/d
 Analog result for SD

3. Partial measures

Partial measure for CS : hiding labels

- Attack is successful because users know the level of their keys.
- Idea: hide the level
- BC sends to user u covered by subtree S_i ($\pi(i), L_i$) instead of (i, L_i)

where π is a secret permutation of labels

• Broadcast (π (i), E_{Li} (K))

Partial measure for CS : hiding labels

Cons:

 By public collaboration, traitors can estimate the level of their keys.

Pros:

- A traitor must trust the others.
- Traitors lose the anonimity guarantee.
- "Cheap" to implement.

Partial measure for CS : or-based construction

- Idea: use the OR-protocols from [GSY99] to reduce anonimity level
- For each subtree S_i , BC fixes set of keys $K_i = \{L_{i1}, ..., L_{im}\}$

and a prob. dist. D_i over K_i

- User u covered by S_i receives a single key L_{ij} according to D_i
- All keys in K_i are used to broadcast

Partial measure for CS : or-based construction

Cons:

- Total # of gen. keys grows by m factor
- Ciphertext length grows by m factor

Pros:

- # keys per user remains the same
- anon. level is reduced
- anon. guarantee is lost (only probabilistic)

4. Hybrid CS and SD

Hybrid CS scheme: Idea

Combine two constructions:

- CS scheme from [NNL01].
- Polynomial-based scheme from [NPOO].

Hybrid CS: Parameters

- G = <g> : group of order q with hard DDH.
- threshold value t > 0
- (public) reconstruction values ${I_1,...,I_t}$ in $Z_q \setminus {0}$
- User u gets I_u in $Z_q \setminus \{0, I_1, \dots, I_t\}$

Hybrid CS: Setup

- For each subtree S_i , BC
- chooses (secret) t-degree polymial
 $P_i(x) \leftarrow_{\$} Z_q[x]$
- sends to each user **u** covered by S_i (i, $P_i(I_u)$)

Hybrid CS: Broadcast

For new session, BC

- chooses session key K
- computes a cover $S=\{S_i\}$ for leg. users
- for each subtree S_i in S:

1.
$$r_i \leftarrow_{\$} Z_q$$

2 $\forall i = 1 + d = d$

2.
$$\forall j = 1, ..., t \quad d_{ij} := g^{ri Pi(Ij)}$$

3.
$$K_i := g^{ri Pi(0)}$$

- 4. broadcasts (i, g^{ri} , {d_{ij}}, E_{Ki}(K))
- broadcasts $F_{K}(M)$

Hybrid CS: Decryption

Leg. user u, from broadcast: (i, g^{ri} , { d_{ij} := $g^{ri Pi(Ij)}$ }, $E_{Ki}(K)$) u info: $(i, P_i(I_u)), I_u$ (public) values: $\{I_1, \dots, I_+\}$ computes the subtree key $K_i := q^{ri Pi(0)}$ by "polynomial interpolation in the exponent". Then recovers session key K

Hybrid SD scheme: Idea

Also combine the 2 constructions:

- SD scheme from [NNL01].
- Polynomial-based scheme from [NPOO].
 Not an immediate generalization of previous construction:
- We preserve the pseudorandom key generation which allows each user to store only O((log N)²) labels.

Hybrid SD: Parameters

- G = <g> : group of order q with hard DDH.
- threshold value t > 0
- (public) reconstruction values ${I_1,...,I_t}$ in $Z_q \setminus {0}$
- User u gets I_u in $Z_q \setminus \{0, I_1, \dots, I_t\}$

Hybrid SD: Setup

- BC generates an instance of SD with Z_q as set for keys L_{ij} Then, for each subtree S_i , BC
- chooses (secret) t-degree polymial
 $P_i(x) \leftarrow_{\$} Z_q[x]$
- sends to each user u covered by $S_{i,*}$ (i, $P_i(I_u)$) and labels that SD assigns to him

Hybrid SD: Broadcast

For new session, BC

- chooses session key K
- computes a cover $S=\{S_{ij}\}$ for leg. users
- for each subtree S_{ij} in S:

$$l. \quad \mathbf{r_i} \leftarrow_{\$} \mathsf{Z_q}$$

2.
$$\forall k = 1, \dots, t \quad d_{ijk} := g^{ri Pi(Ik) Li}$$

- 3. K_{ii}:=g^{ri Pi(0) Lij}
- 4. broadcasts (ij, g^{ri} , { d_{ijk} }_k, E_{Kij} (K))
- broadcasts $F_{K}(M)$

Hybrid SD: Decryption

- Again, leg. user u recovers subtree key K_{ij} by "polynomial interpolation in the exponent".
- Then \mathbf{u} recovers session key \mathbf{K}

- Each pair (i, P_i(I_u)) determines univocally user u
- Therefore the Pirates 2.0 strategy that uses projection functions does not work anymore, as anonymity level drops to 1 (traitor can be traced)

- We also prove that our schemes satisfy the key-ind property in the Subset-Cover framework.
- This implies that they are secure against arbitrary coalitions of revoked users.
- They are also as efficient as CS and SD, in terms of key storage and bandwidth (with a t factor growth)

Price to pay:

- Broadcast and decryption computations are more expensive than ones in CS and SD (exponentiations)
- t+1 users covered by subtree S_i can compute and distribute P_i(0), which allows to decrypt if S_i is used

Advantages:

- Pirates 2.0 with proj. func. are traced
- Secure against arb. coa. of rev. users
- Efficient as CS and SD both in:
 - Key storage
 - Bandwith (asymptotically)

Open problems

- It is of interest to formally define a security model which covers all possible Pirates 2.0 attacks
- and find and prove schemes (existing or new) to be secure in this extended model.

Thank you! Questions?