
Fully Non-Interactive Onion Routing
with Forward-Secrecy

D. Catalano1, M. Di Raimondo1, D. Fiore2, R.Gennaro3 and O. Puglisi1

1Università di Catania, Italy
2ENS, France

3IBM Research, USA

ACNS 2011 – Nerja (Malaga), Spain

Outline
• Anonymity in a public network
• Onion Routing
! Security properties
! Previous work

• Forward-Secure Onion Routing
! Our solution

• Comparisons

Fully Non-Interactive Onion Routing with Forward-Secrecy

2

Anonymity in a public network
Fully Non-Interactive Onion Routing with Forward-Secrecy

3

Internet

Nov 10, 2009 3.22 pm
Alice connected to Rabbit

Connect to
Rabbit

Nov 10, 2009 3.30 pm
King connected to Rabbit

Adversary

Observes the traffic
through Rabbit and
learns:

Onion Routing [Chaum81,Goldschlag et al.96]
Fully Non-Interactive Onion Routing with Forward-Secrecy

4

Onion Routing Network

Alice connected to OR1

OR6 connected to Rabbit

Connect to Rabbit Onion Routers

Choose a
random
ordered
subset of
ORs

Encrypted link
Unencrypted link

Establish a circuit 1 2 3

4 5 6

7 8 9

Adversary’s view

Onion Routing
1.  Alice establishes a session key with each Onion Router
!  K1 with OR1, K6 with OR6, K8 with OR8

2.  Alice creates an “onion” ciphertext {8, {6, {m}K6}K8}K1
and sends it to OR1

Fully Non-Interactive Onion Routing with Forward-Secrecy

5

 OR1 8, {6, {m}K6}K8

Decrypt

{ }K1 OR8 {6, {m}K6}K8

 OR6 {m}K6

Decrypt
And obtain m=“Send M to Rabbit”

M

And so on… until

Why does OR achieve anonymity?

• Encrypted links hide the circuit
• The adversary cannot have a complete view of

the entire network
• ! it is infeasible to link Alice and the Rabbit!

• How to establish session keys?
! This can be considered the main technical

problem of each OR protocol
! We focus on this part

Fully Non-Interactive Onion Routing with Forward-Secrecy

6

Forward Secrecy
•  First OR proposal [Goldschlag et al.96]:

!  pick a random session key K
!  send K encrypted with the recipient’s public key

•  What if the adversary later corrupts Onion Routers and recovers
session keys?

•  He would be able to learn the circuit and thus break anonymity of
past communications!

Fully Non-Interactive Onion Routing with Forward-Secrecy

7

1 2 3

4 5 6

7 8
9

Onion Routing Protocols
•  Tor: The Second Generation Onion Routing Project
!  Active project that provides anonymity over Internet (currently with

about 1000 onion routers and 100.000 users)
!  First: achieve forward secrecy by periodically changing public keys

!  Inefficient as it requires issuing new certificates and additional traffic
!  Then: Tor Authentication Protocol (TAP) using telescoping [Goldb.06]

•  Telescoping

Fully Non-Interactive Onion Routing with Forward-Secrecy

8

1

Establish a secure channel with OR1 (via an RSA-encrypted Diffie-Hellman key-exchange)
Choose OR1 Choose OR2

2

Use the channel with OR1 to establish another channel with OR2

n…….

And so on until the last router in the circuit

TAP achieves forward secrecy using an interactive protocol.
 Total cost = O(n2) exchanged messages

Pairing-Based Onion Routing [KGZ07]
• Adopt the ID-based setting

• Alices doesn’t need to get ORs public keys
!  The key-agreement is non-interactive

•  In order to achieve forward secrecy:
!  KGC frequently changes master key (e.g. every day)
!  KGC frequently issues new private keys for onion routers

(e.g. every hour)
• ! less traffic for users than in the PKI setting
• " a lot of work for the KGC – interaction OR-KGC

Fully Non-Interactive Onion Routing with Forward-Secrecy

9

OR1

KGC

Use “ID” as ID’s
public key

OR6

K1

K6

P1

P6

Certificateless Onion Routing [CFG09]
• Apply the idea of Certificateless Encryption to OR

• The key-agreement phase is non-interactive
• ! Routers update keys by themselves
• " Alice has to get new PKs at every update

Fully Non-Interactive Onion Routing with Forward-Secrecy

10

OR1

KGC

Use ID’s public
key to establish K

OR6

K1

K6
KGC cannot

decrypt!

P1

P6

Our Result: a fully non-interactive solution

• Our building blocks:
! CCA-secure Forward-Secure Identity-Based KEM
! Extend FS-PKE [CHK03]
! CCA-secure Symmetric Encryption

fs-IB-KEM:
•  Setup()" (MPK, MSK)
•  KeyGen(MSK,ID,t)"skID,t //identity string ID, time t

•  KeyUpdate(skID,t) " skID,t+1
•  Encap(MPK, ID, t) " (C, K)
•  Decap(skID,t,C) " K

Fully Non-Interactive Onion Routing with Forward-Secrecy

11

Forward-Secure Onion Routing

•  Forward-Secrecy
!  Routers update keys by themselves
!  Alice uses always the same public key

•  Formally prove security assuming CCA-secure fs-IB-KEM and
CCA-secure SKE
!  Fixed small flaw in [KGZ07] saying that a CPA SKE was

sufficient

Fully Non-Interactive Onion Routing with Forward-Secrecy

12

OR1

KGC

OR6

t

t’

t+1

t+1

!
!

(C1,K1)!Enc(MPK,OR1,t)
…
(C6,K6)!Enc(MPK,OR6,t)

C1,{6, C6,{m}K6}K1

C6,{m}K6 K1=Decap(skOR1,t,C1)

K6=Decap(skOR6,t,C6)
skOR6,t+1=KeyUpdate(skOR6,t’)

A concrete construction of fs-IB-KEM

•  Extend [CHK03] to an hybrid hierarchy
•  Basic Idea: use HIBE
!  Users organized in a hierarchy
!  Each user can generate (delegate) keys for
 any of its descendants

•  fs-IB-KEM
!  1st level: users
!  levels>=2: time periods
!  Encrypt(ID1,3)=Encrypt(ID1|01)
!  Keys associated with nodes in the tree
!  At time 3, ID1 has skID,3,skID,4. In case of corruption 1,2 are preserved
!  KeyUpdate: time 3"4. Erase skID,3
!  time 4"5: Generate skID,5, skID,5, erase skID,4

Fully Non-Interactive Onion Routing with Forward-Secrecy

13

KGC

ID1 ID2 fr

1 4

2 3 5 6

…

…
…

0

0 0

1

1 1

ens

fiore

IDn

!
!

A concrete construction of fs-IB-KEM

•  We start from the [BBG05] HIBE
•  Setup: MPK=(g, g1=ga, g2, u, v, h1, …, hL,z=e(g1,g2), H), MSK=g2

a
 L tree’s depth (upper bound on time periods)

•  KeyGen(MSK,ID,t): w1,…,wk nodes representing t

 d0=g2
a(uvH(ID) !hi

f(wi))r, d1=gr, {bi=hi
r}i=k+1, …, L

•  KeyUpdate(SKID,t,t+1): b=0/1 descendant of t
 d0=d0’(uvH(ID) !hi

f(wi) hk+1
f(b))t, d1=d1’gt, {bi=bi’hi

t}i=k+2, …, L

•  Encrypt(MPK,ID,t): C0=(uvH(ID) !hi
f(wi))s,C1=gs,K=zs

•  Decrypt(SKID,t,C): K=e(C0,d1)/e(C1,d0)

•  Theorem: IND-CPA-secure under l-wBDHI* assumption in the
random oracle model

•  Generic conversion to IND-CCA security

Fully Non-Interactive Onion Routing with Forward-Secrecy

14

Comparison with previous works
Fully Non-Interactive Onion Routing with Forward-Secrecy

15

Property /
 Protocol

Tor PB-OR CL-OR Our
Interaction
User-OR "

(telescoping)
! "

(every update)
!

Interaction
OR-KGC ! "

(every update)
! !

Workload KGC ! "
(every update)

! !
Efficiency??

Efficiency to build a circuit
• Considering basic operations costs with PBC lib.

•  Concrete example: 80-bits, 3 nodes, network latency (50ms)
!  Tor: 627ms
!  Our protocol: 370ms

Fully Non-Interactive Onion Routing with Forward-Secrecy

16

Protocol
Total cost (in ms)

80-bits 128-bits

Tor
User 2.3n 16.5n

OR 6.9 93.3

PB-OR
User 1.1n 9.3n

OR 3.9 57.3

CL-OR

User 2.1n 5.1n

OR 3.4 8.2

Our

User 7.8n 63.4n

OR 15.6 178

Some Caveats – Key Escrow

•  2 possible solutions:
1.  Generic conversion to the CL-setting

!  Slightly less efficient (it requires running 2 schemes in
parallel)

2.  A PKI variation
!  No KGC. Each user acts as its own KGC. It can update

keys while the MPK remains always the same.
!  Same computational efficiency as the id-based one!
!  (!) Our scheme has a long public key
!  Recent result (not in the paper): can obtain

constant-size public key using RO

Fully Non-Interactive Onion Routing with Forward-Secrecy

17

Property /
 Protocol

Tor PB-OR CL-OR Our

Key-Escrow ! " ! " !!

! No key-escrow

! No key-escrow

A look at interaction

• We removed interaction from the
cryptographic part of onion routing protocols

• OR protocols still have an interactive
component

! The user has to get the list of active routers

• In our case, list updates do not have to include
updated keys (they remain the same)

Fully Non-Interactive Onion Routing with Forward-Secrecy

18

Conclusions
OUR RESULTS:
1.  A general approach for non-interactive onion routing

protocols with forward-secrecy
!  It works in either the ID-based, CL, PKI settings
!  Formally prove its security based on the basic

ingredients (fs-IB-KEM, SKE)
!  Fixed small flaw in [KZG07]

2.  A practical construction that implements our idea

OPEN PROBLEMS:
•  More efficient constructions of fs-IB-KEM

Fully Non-Interactive Onion Routing with Forward-Secrecy

19

Thanks!

Fully Non-Interactive Onion Routing with Forward-Secrecy

20

