D. Catalano¹, M. Di Raimondo¹, D. Fiore², R.Gennaro³ and O. Puglisi¹

¹Università di Catania, Italy ²ENS, France ³IBM Research, USA

ACNS 2011 – Nerja (Malaga), Spain

Outline

- Anonymity in a public network
- Onion Routing
 - Security properties
 - Previous work
- Forward-Secure Onion Routing
 - Our solution
- Comparisons

Onion Routing

- 1. Alice establishes a session key with each Onion Router
 - K1 with OR1, K6 with OR6, K8 with OR8
- 2. Alice creates an "onion" ciphertext {8, {6, {m}_{K6}}_{K8}}_{K1} (and sends it to OR1

Why does OR achieve anonymity?

- Encrypted links hide the circuit
- The adversary cannot have a complete view of the entire network
- \rightarrow it is infeasible to link Alice and the Rabbit!
- How to establish session keys?
 - This can be considered the main technical problem of each OR protocol
 - We focus on this part

Forward Secrecy First OR proposal [Goldschlag *et al.*96]:

- - pick a random session key K
 - send *K* encrypted with the recipient's public key
- What if the adversary *later* corrupts Onion Routers and recovers

He would be able to learn the circuit and thus break anonymity of past communications!

Onion Routing Protocols • Tor: The Second Generation Onion Routing Project

- - Active project that provides anonymity over Internet (currently with about 1000 onion routers and 100.000 users)
 - **First:** achieve forward secrecy by periodically changing public keys
 - Inefficient as it requires issuing new certificates and additional traffic
 - Then: Tor Authentication Protocol (TAP) using *telescoping* [Goldb.06]
- Telescoping

Change GR until the last router in the circuit

Establishchsacard chithaelRvitto @BtalyishaRSAheacchated DiffielHelRa an key-exchange)

TAP achieves forward secrecy using an interactive protocol.

Total cost = $O(n^2)$ exchanged messages

Pairing-Based Onion Routing [KGZ07]

- Adopt the ID-based setting Use "ID" as ID'spublic key P_1 R_1 P_6 R_6 R_6 R_6
- Alices doesn't need to get ORs public keys
 - The key-agreement is non-interactive
- In order to achieve forward secrecy:
 - KGC frequently changes master key (e.g. every day)
 - KGC frequently issues new private keys for onion routers (e.g. every hour)

OR6

- 🙂 less traffic for users than in the PKI setting

Certificateless Onion Routing [CFG09]

• Apply the idea of *Certificateless Encryption* to OR

- The key-agreement phase is non-interactive
- ③ Routers update keys by themselves
- 😣 Alice has to get new PKs at every update

Our Result: a fully non-interactive solution

Our building blocks:

- CCA-secure Forward-Secure Identity-Based KEM
 - Extend FS-PKE [CHK03]
- CCA-secure Symmetric Encryption

fs-IB-KEM:

- Setup() \rightarrow (MPK, MSK)
- KeyGen(MSK,ID,t)→sk_{ID,t} //identity string ID, time t
- KeyUpdate($sk_{ID,t}$) $\rightarrow sk_{ID,t+1}$
- Encap(MPK, ID, t) \rightarrow (C, K)
- Decap(sk_{ID,t},C) \rightarrow K

Forward-Secure Onion Routing

- Forward-Secrecy
 - Routers update keys by themselves
 - Alice uses always the same public key
- Formally prove security assuming CCA-secure fs-IB-KEM and CCA-secure SKE
 - Fixed small flaw in [KGZ07] saying that a CPA SKE was sufficient

A concrete construction of fs-IB-KEM

- Extend [CHK03] to an hybrid hierarchy
- Basic Idea: use HIBE
 - Users organized in a hierarchy
 - Each user can generate (delegate) keys for any of its descendants

• fs-IB-KEM

- 1st level: users
- levels>=2: time periods
- Encrypt(ID_1 ,3)=Encrypt(ID_1 |01)
- Keys associated with nodes in the tree
- At time 3, ID1 has sk_{ID,3}, sk_{ID,4}. In case of corruption 1,2 are preserved
- KeyUpdate: time $3 \rightarrow 4$. Erase sk_{ID,3}
- time 4 \rightarrow 5: Generate sk_{ID,5}, sk_{ID,5}, erase sk_{ID,4}

A concrete construction of fs-IB-KEM

- We start from the [BBG05] HIBE
- <u>Setup:</u> MPK=(g, g₁=g^a, g₂, u, v, h₁, ..., h_L,z=e(g₁,g₂), H), MSK=g₂^a L tree's depth (upper bound on time periods)
- <u>KeyGen(MSK,ID,t)</u>: w₁,...,w_k nodes representing t

 $d_0 = g_2^a (uv^{H(ID)} \prod h_i^{f(wi)})^r, d_1 = g^r, \{b_i = h_i^r\}_{i=k+1, \dots, L}$

- <u>KeyUpdate(SK_{ID,t},t+1)</u>: b=0/1 descendant of t $d_0 = d_0'(uv^{H(ID)} \Pi h_i^{f(wi)} h_{k+1}^{f(b)})^t, d_1 = d_1'g^t, \{b_i = b_i'h_i^t\}_{i=k+2, ..., L}$
- Encrypt(MPK,ID,t): $C_0 = (uv^{H(ID)} \Pi h_i^{f(wi)})^s, C_1 = g^s, K = z^s$
- $\underline{\text{Decrypt}(SK_{ID,t},C)}$: $K=e(C_0,d_1)/e(C_1,d_0)$
- <u>Theorem</u>: IND-CPA-secure under *l-wBDHI** assumption in the random oracle model
- Generic conversion to IND-CCA security

Comparison with previous works

Property / Protocol	Tor	PB-OR	CL-OR	Our
Interaction User-OR	(telescoping)	\odot	(every update)	
Interaction OR-KGC		(every update)		
Workload KGC	\odot	(every update)	\odot	\odot
Efficiency??				

Efficiency to build a circuit

• Considering basic operations costs with PBC lib.

	Protocol		Total cost (in ms)		
			80-bits	128-bits	
	Tor	User	2.3n	16.5n	
		OR	6.9	93.3	
		User	1.1n	9.3n	
	PB-OK	OR	3.9	57.3	
CL		User	2. 1n	5.1n	
	CL-OK	OR	3.4	8.2	
	Our	User	7.8n	63.4n	
		OR	15.6	178	

- Concrete example: 80-bits, 3 nodes, network latency (50ms)
 - Tor: 627ms
 - **Our protocol:** 370ms

Some Caveats - Key Escrow

Property / Protocol	Tor	PB-OR	CL-OR	Our
Key-Escrow	\odot	8	\odot	8!!

• 2 possible solutions:

1. Generic conversion to the CL-setting

© No key-escrow

- Slightly less efficient (it requires running 2 schemes in parallel)
- 2. A PKI variation ^(C) No key-escrow
 - No KGC. Each user acts as its own KGC. It can update keys while the MPK remains always the same.
 - Same computational efficiency as the id-based one!
 - (!) Our scheme has a long public key
 - **Recent result (not in the paper):** can obtain constant-size public key using RO

A look at interaction

- We removed interaction from the cryptographic part of onion routing protocols
- OR protocols still have an interactive component
 - The user has to get the list of active routers
- In our case, list updates do not have to include updated keys (they remain the same)

Conclusions

OUR RESULTS:

- 1. A general approach for non-interactive onion routing protocols with forward-secrecy
 - It works in either the ID-based, CL, PKI settings
 - Formally prove its security based on the basic ingredients (fs-IB-KEM, SKE)
 - Fixed small flaw in [KZG07]
- 2. A practical construction that implements our idea

OPEN PROBLEMS:

• More efficient constructions of fs-IB-KEM

Thanks!

